INTRODUCCIÓN

Este es un blog acerca de la genética moderna, en el se observaran aspectos como la estructura y composición del ADN, Cariotipos, técnicas de análisis del ADN, modificación genética y sus usos, beneficios y riesgos de la modificación genética, clonación en animales y plantas, composición de los Nucleótidos. Espero que lo disfruten.




lunes, 18 de octubre de 2010






tema 1: estructura y composicion del ADN



La información con la que se fabrican las moléculas necesarias para el mantenimiento de las funciones celulares está guardada en una molécula de ácido nucleico llamada ácido desoxirribonucleico (ADN). En este apartado describiremos su estructura y explicaremos cómo se almacena dentro del núcleo celular.

En la década de los cincuenta, el campo de la biología fue convulsionado por el desarrollo del modelo de la estructura del ADN. James Watson y Francis Crick en 1953 demostraron que consiste en una doble hélice formada por dos cadenas.

El ADN es un ácido nucleico formado por nucleótidos. Cada nucleótido consta de tres elementos:

  1. un azúcar: desoxirribosa en este caso (en el caso de ARN o ácido ribonucleico, el azúcar que lo forma es una ribosa).
  2. un grupo fosfato.
  3. una base nitrogenada.
Si la molécula tiene sólo el azúcar unido a la base nitrogenada entonces se denomina nucleósido.

Las bases nitrogenadas que constituyen parte del ADN son: adenina (A), guanina (G), citosina (C) y timina (T). Estas forman puentes de hidrógeno entre ellas, respetando una estricta complementariedad: A sólo se aparea con T (y viceversa) mediante dos puentes de hidrógeno, y G sólo con C (y viceversa) mediante 3 puentes de hidrógeno.

Los extremos de cada una de las hebras del ADN son denominados 5’-P (fosfato) y 3’–OH (hidroxilo) en la desoxirribosa. Las dos cadenas se alinean en forma paralela, pero en direcciones inversas (una en sentido 5’ → 3’ y la complementaria en el sentido inverso), pues la interacción entre las dos cadenas está determinada por los puentes de hidrógeno entre sus bases nitrogenadas. Se dice, entonces, que las cadenas son antiparalelas.



Figura 1. Estructura del ADN. El ácido desoxirribonucleico es un polímero de dos cadenas antiparalelas (orientación 5’ 3’ y 3’ 5’). Cada cadena está compuesta por unidades de un azúcar (desoxirribosa), un fosfato y una base nitrogenada unidas entre si por enlaces fosfodiéster. Las bases presentes en el ADN son: adenina (A), timina (T), citosina (C) y guanina (G). Para recordar cómo aparean entre sí las bases podemos pensar en las iniciales de dos grandes personajes del tango: Aníbal Troilo (adenina es la base complementaria de timina) y Carlos Gardel (citosina es la comlementaria a guanina).







histona:
Las histonas son proteínas básicas, ricas en residuos de lisina y arginina, que muestran una elevada conservación evolutiva y que interaccionan con el ADN formando una subunidad que se repite a lo largo de la cromatina denominada nucleosoma. Los principales tipos de histonas que se han aislado en los núcleos interfásicos en diferentes especies eucariontes son: H1, H2A, H2B, H3 y H4. Además de estas histonas, también existen otras que son específicas de tejido como la histona H5 muy rica en lisina (25 moles%) específica de eritrocitos nucleados de vertebrados no mamíferos, y las histonas del endosperma. Asimismo, la cromatina centromérica se caracteriza por la presencia de una isoforma específica de la histona H3, denominada CENP-A en vertebrados.

Una de las características más destacables es su elevado conservadurismo evolutivo, sobre todo de las histonas H3 y H4. La histona H4 de guisante y de timo de ternera se diferencian solamente en dos aminoácidos. Este dato indica que las interacciones entre el ADN y las histonas para formar la cromatina deben ser muy semejantes en todos los organismos eucariontes.

Los genes que codifican las histonas se encuentran agrupados en nichos (o clusters) que se repiten decenas o centenas de veces. Cada cluster o grupo contiene el siguiente orden de genes que codifican histonas: H1-H2A-H3-H2B-H4. Estos genes son ricos en pares G-C, ya que codifican proteínas con un elevado contenido en lisina y arginina, pero están separados por secuencias espaciadoras ricas en pares A-T.


El nucleosoma:

Estructura del nucleosoma.La cromatina de núcleos en interfase, cuando se observa mediante técnicas de microscopia electrónica, se puede describir como un collar de cuentas o un rosario, en el que cada cuenta es una subunidad esférica o globular que se denomina nucleosoma; los nucleosomas se hallan unidos entre sí mediante fibras de ADN. Se sigue, entonces, que la unidad básica de la estructura de la cromatina es el nucleosoma. Un nucleosoma típico está asociado a 200 pares de bases (pb) de ADN y está formado por una médula (core en inglés) y un ligador (o linker). La médula está formada por un octámero constituido por dos subunidades de las histonas H2A, H2B, H3 y H4. En otras palabras, se trata de un dímero: 2×(H2A, H2B, H3, H4). Los trabajos de Aaron Klug y colaboradore sobre la disposición de las histonas en la médula del nucleosoma le valieron el Premio Nobel de Química en 1982. Alrededor de la médula se enrolla el ADN (140 pb) dando casi dos vueltas (una vuelta y tres cuartos). El resto del ADN (60 pb) forma parte del ligador (linker), que interacciona con la histona H1.
La cantidad de ADN asociado con un nucleosoma varía de una especie a otra, de 154 pb a 241 pb; esta variación se debe fundamentalmente a la cantidad de ADN asociada al ligador.

Las fibras de ADN dúplex desnudo tienen un grosor de 20 Å. La asociación del ADN con las histonas genera los nucleosomas, que muestran unos 100 Å de diámetro. A su vez, los nucleosomas se pueden enrollar helicoidalmente para formar un solenoide (una especie de muelle) que constituye las fibras de cromatina de los núcleos intefásicos con un diámetro aproximado de 300 Å. Los solenoides pueden volverse a enrollar para dar lugar a supersolenoides con un diámetro de 4.000 Å a 6.000 Å que constituirían las fibras de los cromosomas metafásicos.


Proteínas cromosómicas no histónicas: el armazón proteico:
Las proteínas cromosómicas no histónicas son proteínas diferentes de las histonas que se extraen de la cromatina de los núcleos con ClNa 0.35M (solución salina), tienen un alto contenido en aminoácidos básicos (25% o más), alto contenido en aminoácidos ácidos (20-30%), una elevada proporción de prolina (7%), bajo contenido en aminoácidos hidrofóbicos y una alta movilidad electroforética. Las proteínas cromosómicas no histónicas que se extraen de la cromatina de los núcleos varían mucho dependiendo de la técnica de aislamiento empleada. Un grupo de estas proteínas cromosómicas no histónicas presentan alta movilidad electrofóretica y se denominan abreviadamente HMG (grupo de alta movilidad).

Las proteínas HMG :


Estas proteínas se agrupan en una superfamilia por sus similitudes físicas y químicas, y porque todas ellas actúan como elementos arquitectónicos que afectan múltiples procesos dependientes de ADN en el contexto de la cromatina. Todas las HMGs tienen un terminal carboxilo rico en aminoácidos de tipo ácido, y se clasifican en tres familias (HMGA, HMGB y HMGN), cada una con un motivo funcional único, que induce cambios específicos en sus sitios de unión y participa en funciones celulares diferentes.
La familia HMGA consta de cuatro miembros, y todos ellos contienen un motivo funcional característico, denominado "gancho AT" (AT hook). A través de estas secuencias, las HMGAs se unen preferencialmente a secuencias ricas en AT de ADN en forma-B e inducen cambios de conformación que inducen la unión de componentes adicionales. Las proteínas HMGA tienen una cola C-terminal ácida, que podría ser importante para la interacción con otras proteínas. Tradicionalmente, este grupo se denominaba HMG-I/Y.

La familia HMGB consta de tres variantes, cada una de las cuales contiene dos motivos funcionales (las cajas HMG) y un extremo C-terminal muy ácido. Las cajas HMG están formadas por tres α-hélices plegadas conjuntamente para formar una estructura en forma de L, que en parte se introduce en la hendidura menor del ADN, plegándolo intensamente. Existen ligeras diferencias entre las cajas HMG de las diferentes HMGB, lo que confiere especificidad a cada una de ellas. Las colas acídicas modulan la afinidad por una variedad de estructuras de ADN distorsionado. Tradicionalmente estas proteínas se denominaban proteínas HMG-1/-2.

La familia de proteínas HMGN se caracteriza por un dominio cargado positivamente, el dominio de unión a nucleosomas, y por una cola C-terminal ácida, el dominio de desplegado de la cromatina. Las proteínas HMGN se unen específicamente a los nucleosomas y alteran tanto la estructura local como la estructura de nivel superior de la cromatina. Estas proteínas se conocen tradicionalmente como la subfamilia HMG-14/-17.

Se han detectado más de 20 proteínas HMG; las proteínas HMG-1/-2 (HMGB) y HMG-14/-17 (HMGA) se han identificado en todas las especies de mamíferos, aves y peces estudiadas hasta el momento. Las proteínas HMG-1/-2 se encuentran sólo en el núcleo, están implicadas en la replicación, se unen preferentemente a ADN de hélice sencilla, desenrollan el ADN dúplex y se estima que existe una molécula de HMG-1 ó HMG-2 por cada 15 nucleosomas. Las proteínas HMG-14/-17 se encuentran en el núcleo y en el citoplasma, están relacionadas con la regulación de la transcripción y se estima que existe una molécula de HMG14 ó HMG-17 por cada 10 nucleosomas.

El armazón proteico de los cromosomas:
Muchos estudios citogenéticos muestran que el ADN en los cromosomas está intensamente enrollado cuando se observan al microscopio. El primer nivel de compactación lineal del ADN es el obtenido por el plegamiento de la fibra del ADN alrededor de los nucleosomas, responsable del primer nivel de plegamiento lineal (de 6 a 7 veces). El siguiente nivel de plegamiento corresponde a la denominada "fibra de 30 nm", que es lo que se observa en núcleos en interfase. Aunque ha habido mucha controversia para describir esta estructura, la fibra de 30 nm se considera normalmente como el enrollamiento helicoidal de las fibras de nucleosomas, que genera la compactación de otras 6-7 veces. En mitosis, la fibra de 30 nm debe compactarse otras 200-500 veces hasta alcanzar el diámetro observado al microscopio para las fibras cromosómicas durante la división celular (~700 nm). Por tanto, se han tenido que producir nuevos superenrollamientos. Sin embargo, la explicación de estos plegamientos de orden superior ha generado gran controversia.

Laemmli y colaboradores en 1977 consiguieron aislar cromosomas metafásicos desprovistos de histonas mediante un tratamiento con sulfato de dextrano y heparina. Estos cromosomas metafásicos desprovistos de histonas presentan una médula central densamente teñida que ha sido denominada “scaffold” (armazón). Este armazón proteico (“scaffold”) es resistente a la acción de la ADNasa, ARNasa y también a soluciones de ClNa 2M. Sin embargo, desaparece por tratamientos con urea 4M y dodecil sulfato sódico o por tratamiento con enzimas proteolíticas. Por tanto, se trata de un armazón proteico.

La observación a microscopía electrónica pone de manifiesto que de este armazón proteico (“scaffold”) salen y llegan lazos o fibras que pueden hacerse desaparecer mediante tratamiento con ADNasa. Por tanto, estos lazos o dominios que arrancan del armazón proteico son lazos de ADN. Uno de los principales componentes del armazón proteico es la enzima topoisomerasa II α (topoIIα), una enzima que produce cortes en el ADN dúplex a nivel de ambas hélices. La topoisomerasa II (girasa) interviene durante la replicación del ADN creando o relajando los superenrollamientos. En mamíferos se encuentran dos isoformas de esta enzima (α y ß), con propiedades similares in vitro.
Sin embargo, aunque topoIIα y β se comportan in vivo de forma similar en interfase, en mitosis tienen un comportamiento diferente: sólo topoIIα está asociado mayoritariamente a los cromosomas. La aparición de la topoisomerasa II α sólo en el armazón proteico sugiere que se encuentra en la base de los lazos o dominios de ADN, indicando que esta organización en dominios podría estar relacionada con la replicación y transcripción. Otras enzimas, como la topoisomerasa I que produce cortes en el ADN dúplex a nivel de una sola hélice y la HMG-17, se encuentran sólo en los lazos o dominios y no en el armazón proteico. La evidencia existente hasta el momento sugiere que las fibras de solenoides (30 nm) formarían los lazos o dominios que emanan del armazón proteico y que este armazón estaría a su vez enrollado formando una espiral.
Además de la enzima topoisomerasa II α, el otro componente fundamental propuesto del armazón proteico es la condensina 13S. La tinción doble con anticuerpos contra topoIIα y condensina genera un armazón con aspecto de un "polo de barbero" (un cilindro con bandas espirales rojas y blancas que simboliza la antigua doble profesión de los barberos como cirujanos), en la cual alternan "cuentas" enriquecidas en topoIIα y en condensina. Esta estructura parece estar generada por dos cadenas yuxtapuestas. Parece ser que el ensamblaje de este armazón proteico tiene lugar en dos fases, ya que la condensina sólo se asocia en la transición de profase a metafase durante la mitosis. Sin embargo, el papel estructural de la topoIIα en la organización de los cromosomas aún se discute, ya que otros grupos argumentan que esta enzima se intercambia rápidamente tanto en los brazos cromosómicos como en los cinetocoros durante la mitosis.

Los dominios de ADN parecen estar unidos al armazón proteico por unas regiones específicas denominadas abreviadamente SARs (scaffold associated regions, también denominadas MARS, matrix attachment regions) que se detectan cuando los cromosomas metafásicos desprovistos de histonas se tratan con endonucleasas de restricción. Después de este tratamiento quedan regiones de ADN unidas al armazón que a su vez resisten la digestión con exonucleasas gracias a que están protegidas por una proteína. Cuando se digiere esta proteína, las regiones de ADN protegidas contienen secuencias de varios cientos de pares de bases que son muy ricas en AT y que presentan sitios de unión para topoisomerasa II e histona H1. Estas regiones de unión específicas de los dominios al armazón proteico son las regiones SARs. Se ha sugerido que estas regiones juegan un papel global durante la condensación de los cromosomas mitóticos y son necesarias para el mantenimiento de la estructura de los cromosomas. Las regiones SARs también podrían estar implicadas en la expresión génica, al facilitar tanto la transición como la expansión de una estructura abierta de la cromatina.

Modelos alternativos de la estructura cromosómica:
Es cada vez más evidente que incluso con los métodos de fijación más utilizados[28] se pueden producir cambios significativos en la localización de las proteínas cromosómicas, y estas dificultades técnicas han estado presentes en la mayor parte de las preparaciones cromosómicas utilizadas para realizar los estudios estructurales. Por ello, parece necesario utilizar muestras vivas siempre que sea posible, así como aproximaciones alternativas que permitan un análisis complementario.

La aproximación biofísica:
Un modo alternativo para el análisis estructural de los cromosomas es el biofísico. Las medidas precisas de la rigidez y la elasticidad de los cromosomas pueden guiar la construcción de los modelos estructurales. Estudios realizados en diferentes laboratorios indican que los cromosomas presentan una elasticidad remarcable: tanto dentro de las células como en tampones fisiológicos, los cromosomas pueden estirarse hasta varias veces su longitud normal y volver de nuevo a su longitud original. Sin embargo, los datos obtenidos por diferentes laboratorios son muy variables, probablemente debido a la variedad de tampones utilizado por los distintos grupos. Un estudio de Poirier y Marko en 2002 mostró que la elasticidad de los cromosomas es muy sensible a nucleasa. Estos datos sugieren que la integridad mecánica de los cromosomas mitóticos se mantiene por enlaces entre las fibras cromosómicas, no por la existencia de un armazón proteico. La naturaleza de estos enlaces no está clara, pero este estudio estima su frecuencia en 10-20 kb como mínimo.


pregutnas del profesor:
Answer the questions:
The table shows the base composition of genetic material from ten sources.
Source of genetic material Base composition (%)



A) Deduce the type of genetic material used by
• Cattle
• E.coli
• Influenza viruses
B) Suggest a reason for the difference between Cattle thymus gland, Spleen and sperm in the measurements of their base composition.
C) – Explain the reasons for the total amount of adenine plus guanine being close to 50% in the genetic material of many of the species in the table.
_Identify two other trends in the base composition of the species that have 50% adenine and guanine.
D) _ Identify a species shown in the table that does not follow the trends in base composition described in C)
_ Explain the reasons for the base composition of this species being different.

Desarrollo:

A.

-cattle: usa el material genetico de tipo de ADN, ya que no posee timina, si este fuese RNA no pudiese poseer timina, en su lugar tendria consigo uracilo y en la tabla se observa claramente que no lo posee, ya que se complementan sus bases y ademas aparece en esta que no tiene uracilo.

-E. coli: el denominado E. coli, también usa un material genetico de tipo de DNA, ya que este tampoco posee uracilo, posee timina y sus bases nitrogenadas se complementan, ademas en la tabla nos indican que no posee uracilo ya que aparece con el número 0.0.

-influenza viruses: posee un materia genetico de tipo de RNA, y que posee uracilo, contrario a los casos anteriores, en lugar de timina posee uracilo, en la tabla nos indica que posee 0.0 cantidades de timina mientras que posee 32.5 de porcentaje en la composicion de la influenza de viruses.

B. aunque poseean un mismo numero de azucar de cinco carbonos y un mismo numero de fosfato, poseen una diferencia notable de sus bases nitrogenadas, ya que cumplen una funcion distinta cada cual y necesitan tener esa estructura para poder realizar dicha funcion de una forma correcta.

C. -La razón por la cual la adenina y la guanina sumadas esten cerca del 50 porciento, es porque se necesia para la corecta estructura y funcion del ADN, ademas estas poseen caracteriscas similares, y es necesario que lleven cantidades parecidas continuamente, por lo cual se encuentran en una suma del 50 porciento.

-Si la cantidad de adenina y guanina es del 50 porciento, la de la timina y citocina es también del 50 porciento logicamente, en este caso la timina debe ser mayor que la citocina, ya que la timina es el complemento de la adenina y la adenina en el caso que estamos observando es mayor que la citosina.

D. la diferente es la influenza virus, ya que esta presenta condiciones de RNA por poseer uracilo, la diferencia de los porcentajes es por que la influenza de virus posee unas funciones y estructura diferentes.

No hay comentarios:

Publicar un comentario