INTRODUCCIÓN

Este es un blog acerca de la genética moderna, en el se observaran aspectos como la estructura y composición del ADN, Cariotipos, técnicas de análisis del ADN, modificación genética y sus usos, beneficios y riesgos de la modificación genética, clonación en animales y plantas, composición de los Nucleótidos. Espero que lo disfruten.




lunes, 18 de octubre de 2010






tema 1: estructura y composicion del ADN



La información con la que se fabrican las moléculas necesarias para el mantenimiento de las funciones celulares está guardada en una molécula de ácido nucleico llamada ácido desoxirribonucleico (ADN). En este apartado describiremos su estructura y explicaremos cómo se almacena dentro del núcleo celular.

En la década de los cincuenta, el campo de la biología fue convulsionado por el desarrollo del modelo de la estructura del ADN. James Watson y Francis Crick en 1953 demostraron que consiste en una doble hélice formada por dos cadenas.

El ADN es un ácido nucleico formado por nucleótidos. Cada nucleótido consta de tres elementos:

  1. un azúcar: desoxirribosa en este caso (en el caso de ARN o ácido ribonucleico, el azúcar que lo forma es una ribosa).
  2. un grupo fosfato.
  3. una base nitrogenada.
Si la molécula tiene sólo el azúcar unido a la base nitrogenada entonces se denomina nucleósido.

Las bases nitrogenadas que constituyen parte del ADN son: adenina (A), guanina (G), citosina (C) y timina (T). Estas forman puentes de hidrógeno entre ellas, respetando una estricta complementariedad: A sólo se aparea con T (y viceversa) mediante dos puentes de hidrógeno, y G sólo con C (y viceversa) mediante 3 puentes de hidrógeno.

Los extremos de cada una de las hebras del ADN son denominados 5’-P (fosfato) y 3’–OH (hidroxilo) en la desoxirribosa. Las dos cadenas se alinean en forma paralela, pero en direcciones inversas (una en sentido 5’ → 3’ y la complementaria en el sentido inverso), pues la interacción entre las dos cadenas está determinada por los puentes de hidrógeno entre sus bases nitrogenadas. Se dice, entonces, que las cadenas son antiparalelas.



Figura 1. Estructura del ADN. El ácido desoxirribonucleico es un polímero de dos cadenas antiparalelas (orientación 5’ 3’ y 3’ 5’). Cada cadena está compuesta por unidades de un azúcar (desoxirribosa), un fosfato y una base nitrogenada unidas entre si por enlaces fosfodiéster. Las bases presentes en el ADN son: adenina (A), timina (T), citosina (C) y guanina (G). Para recordar cómo aparean entre sí las bases podemos pensar en las iniciales de dos grandes personajes del tango: Aníbal Troilo (adenina es la base complementaria de timina) y Carlos Gardel (citosina es la comlementaria a guanina).







histona:
Las histonas son proteínas básicas, ricas en residuos de lisina y arginina, que muestran una elevada conservación evolutiva y que interaccionan con el ADN formando una subunidad que se repite a lo largo de la cromatina denominada nucleosoma. Los principales tipos de histonas que se han aislado en los núcleos interfásicos en diferentes especies eucariontes son: H1, H2A, H2B, H3 y H4. Además de estas histonas, también existen otras que son específicas de tejido como la histona H5 muy rica en lisina (25 moles%) específica de eritrocitos nucleados de vertebrados no mamíferos, y las histonas del endosperma. Asimismo, la cromatina centromérica se caracteriza por la presencia de una isoforma específica de la histona H3, denominada CENP-A en vertebrados.

Una de las características más destacables es su elevado conservadurismo evolutivo, sobre todo de las histonas H3 y H4. La histona H4 de guisante y de timo de ternera se diferencian solamente en dos aminoácidos. Este dato indica que las interacciones entre el ADN y las histonas para formar la cromatina deben ser muy semejantes en todos los organismos eucariontes.

Los genes que codifican las histonas se encuentran agrupados en nichos (o clusters) que se repiten decenas o centenas de veces. Cada cluster o grupo contiene el siguiente orden de genes que codifican histonas: H1-H2A-H3-H2B-H4. Estos genes son ricos en pares G-C, ya que codifican proteínas con un elevado contenido en lisina y arginina, pero están separados por secuencias espaciadoras ricas en pares A-T.


El nucleosoma:

Estructura del nucleosoma.La cromatina de núcleos en interfase, cuando se observa mediante técnicas de microscopia electrónica, se puede describir como un collar de cuentas o un rosario, en el que cada cuenta es una subunidad esférica o globular que se denomina nucleosoma; los nucleosomas se hallan unidos entre sí mediante fibras de ADN. Se sigue, entonces, que la unidad básica de la estructura de la cromatina es el nucleosoma. Un nucleosoma típico está asociado a 200 pares de bases (pb) de ADN y está formado por una médula (core en inglés) y un ligador (o linker). La médula está formada por un octámero constituido por dos subunidades de las histonas H2A, H2B, H3 y H4. En otras palabras, se trata de un dímero: 2×(H2A, H2B, H3, H4). Los trabajos de Aaron Klug y colaboradore sobre la disposición de las histonas en la médula del nucleosoma le valieron el Premio Nobel de Química en 1982. Alrededor de la médula se enrolla el ADN (140 pb) dando casi dos vueltas (una vuelta y tres cuartos). El resto del ADN (60 pb) forma parte del ligador (linker), que interacciona con la histona H1.
La cantidad de ADN asociado con un nucleosoma varía de una especie a otra, de 154 pb a 241 pb; esta variación se debe fundamentalmente a la cantidad de ADN asociada al ligador.

Las fibras de ADN dúplex desnudo tienen un grosor de 20 Å. La asociación del ADN con las histonas genera los nucleosomas, que muestran unos 100 Å de diámetro. A su vez, los nucleosomas se pueden enrollar helicoidalmente para formar un solenoide (una especie de muelle) que constituye las fibras de cromatina de los núcleos intefásicos con un diámetro aproximado de 300 Å. Los solenoides pueden volverse a enrollar para dar lugar a supersolenoides con un diámetro de 4.000 Å a 6.000 Å que constituirían las fibras de los cromosomas metafásicos.


Proteínas cromosómicas no histónicas: el armazón proteico:
Las proteínas cromosómicas no histónicas son proteínas diferentes de las histonas que se extraen de la cromatina de los núcleos con ClNa 0.35M (solución salina), tienen un alto contenido en aminoácidos básicos (25% o más), alto contenido en aminoácidos ácidos (20-30%), una elevada proporción de prolina (7%), bajo contenido en aminoácidos hidrofóbicos y una alta movilidad electroforética. Las proteínas cromosómicas no histónicas que se extraen de la cromatina de los núcleos varían mucho dependiendo de la técnica de aislamiento empleada. Un grupo de estas proteínas cromosómicas no histónicas presentan alta movilidad electrofóretica y se denominan abreviadamente HMG (grupo de alta movilidad).

Las proteínas HMG :


Estas proteínas se agrupan en una superfamilia por sus similitudes físicas y químicas, y porque todas ellas actúan como elementos arquitectónicos que afectan múltiples procesos dependientes de ADN en el contexto de la cromatina. Todas las HMGs tienen un terminal carboxilo rico en aminoácidos de tipo ácido, y se clasifican en tres familias (HMGA, HMGB y HMGN), cada una con un motivo funcional único, que induce cambios específicos en sus sitios de unión y participa en funciones celulares diferentes.
La familia HMGA consta de cuatro miembros, y todos ellos contienen un motivo funcional característico, denominado "gancho AT" (AT hook). A través de estas secuencias, las HMGAs se unen preferencialmente a secuencias ricas en AT de ADN en forma-B e inducen cambios de conformación que inducen la unión de componentes adicionales. Las proteínas HMGA tienen una cola C-terminal ácida, que podría ser importante para la interacción con otras proteínas. Tradicionalmente, este grupo se denominaba HMG-I/Y.

La familia HMGB consta de tres variantes, cada una de las cuales contiene dos motivos funcionales (las cajas HMG) y un extremo C-terminal muy ácido. Las cajas HMG están formadas por tres α-hélices plegadas conjuntamente para formar una estructura en forma de L, que en parte se introduce en la hendidura menor del ADN, plegándolo intensamente. Existen ligeras diferencias entre las cajas HMG de las diferentes HMGB, lo que confiere especificidad a cada una de ellas. Las colas acídicas modulan la afinidad por una variedad de estructuras de ADN distorsionado. Tradicionalmente estas proteínas se denominaban proteínas HMG-1/-2.

La familia de proteínas HMGN se caracteriza por un dominio cargado positivamente, el dominio de unión a nucleosomas, y por una cola C-terminal ácida, el dominio de desplegado de la cromatina. Las proteínas HMGN se unen específicamente a los nucleosomas y alteran tanto la estructura local como la estructura de nivel superior de la cromatina. Estas proteínas se conocen tradicionalmente como la subfamilia HMG-14/-17.

Se han detectado más de 20 proteínas HMG; las proteínas HMG-1/-2 (HMGB) y HMG-14/-17 (HMGA) se han identificado en todas las especies de mamíferos, aves y peces estudiadas hasta el momento. Las proteínas HMG-1/-2 se encuentran sólo en el núcleo, están implicadas en la replicación, se unen preferentemente a ADN de hélice sencilla, desenrollan el ADN dúplex y se estima que existe una molécula de HMG-1 ó HMG-2 por cada 15 nucleosomas. Las proteínas HMG-14/-17 se encuentran en el núcleo y en el citoplasma, están relacionadas con la regulación de la transcripción y se estima que existe una molécula de HMG14 ó HMG-17 por cada 10 nucleosomas.

El armazón proteico de los cromosomas:
Muchos estudios citogenéticos muestran que el ADN en los cromosomas está intensamente enrollado cuando se observan al microscopio. El primer nivel de compactación lineal del ADN es el obtenido por el plegamiento de la fibra del ADN alrededor de los nucleosomas, responsable del primer nivel de plegamiento lineal (de 6 a 7 veces). El siguiente nivel de plegamiento corresponde a la denominada "fibra de 30 nm", que es lo que se observa en núcleos en interfase. Aunque ha habido mucha controversia para describir esta estructura, la fibra de 30 nm se considera normalmente como el enrollamiento helicoidal de las fibras de nucleosomas, que genera la compactación de otras 6-7 veces. En mitosis, la fibra de 30 nm debe compactarse otras 200-500 veces hasta alcanzar el diámetro observado al microscopio para las fibras cromosómicas durante la división celular (~700 nm). Por tanto, se han tenido que producir nuevos superenrollamientos. Sin embargo, la explicación de estos plegamientos de orden superior ha generado gran controversia.

Laemmli y colaboradores en 1977 consiguieron aislar cromosomas metafásicos desprovistos de histonas mediante un tratamiento con sulfato de dextrano y heparina. Estos cromosomas metafásicos desprovistos de histonas presentan una médula central densamente teñida que ha sido denominada “scaffold” (armazón). Este armazón proteico (“scaffold”) es resistente a la acción de la ADNasa, ARNasa y también a soluciones de ClNa 2M. Sin embargo, desaparece por tratamientos con urea 4M y dodecil sulfato sódico o por tratamiento con enzimas proteolíticas. Por tanto, se trata de un armazón proteico.

La observación a microscopía electrónica pone de manifiesto que de este armazón proteico (“scaffold”) salen y llegan lazos o fibras que pueden hacerse desaparecer mediante tratamiento con ADNasa. Por tanto, estos lazos o dominios que arrancan del armazón proteico son lazos de ADN. Uno de los principales componentes del armazón proteico es la enzima topoisomerasa II α (topoIIα), una enzima que produce cortes en el ADN dúplex a nivel de ambas hélices. La topoisomerasa II (girasa) interviene durante la replicación del ADN creando o relajando los superenrollamientos. En mamíferos se encuentran dos isoformas de esta enzima (α y ß), con propiedades similares in vitro.
Sin embargo, aunque topoIIα y β se comportan in vivo de forma similar en interfase, en mitosis tienen un comportamiento diferente: sólo topoIIα está asociado mayoritariamente a los cromosomas. La aparición de la topoisomerasa II α sólo en el armazón proteico sugiere que se encuentra en la base de los lazos o dominios de ADN, indicando que esta organización en dominios podría estar relacionada con la replicación y transcripción. Otras enzimas, como la topoisomerasa I que produce cortes en el ADN dúplex a nivel de una sola hélice y la HMG-17, se encuentran sólo en los lazos o dominios y no en el armazón proteico. La evidencia existente hasta el momento sugiere que las fibras de solenoides (30 nm) formarían los lazos o dominios que emanan del armazón proteico y que este armazón estaría a su vez enrollado formando una espiral.
Además de la enzima topoisomerasa II α, el otro componente fundamental propuesto del armazón proteico es la condensina 13S. La tinción doble con anticuerpos contra topoIIα y condensina genera un armazón con aspecto de un "polo de barbero" (un cilindro con bandas espirales rojas y blancas que simboliza la antigua doble profesión de los barberos como cirujanos), en la cual alternan "cuentas" enriquecidas en topoIIα y en condensina. Esta estructura parece estar generada por dos cadenas yuxtapuestas. Parece ser que el ensamblaje de este armazón proteico tiene lugar en dos fases, ya que la condensina sólo se asocia en la transición de profase a metafase durante la mitosis. Sin embargo, el papel estructural de la topoIIα en la organización de los cromosomas aún se discute, ya que otros grupos argumentan que esta enzima se intercambia rápidamente tanto en los brazos cromosómicos como en los cinetocoros durante la mitosis.

Los dominios de ADN parecen estar unidos al armazón proteico por unas regiones específicas denominadas abreviadamente SARs (scaffold associated regions, también denominadas MARS, matrix attachment regions) que se detectan cuando los cromosomas metafásicos desprovistos de histonas se tratan con endonucleasas de restricción. Después de este tratamiento quedan regiones de ADN unidas al armazón que a su vez resisten la digestión con exonucleasas gracias a que están protegidas por una proteína. Cuando se digiere esta proteína, las regiones de ADN protegidas contienen secuencias de varios cientos de pares de bases que son muy ricas en AT y que presentan sitios de unión para topoisomerasa II e histona H1. Estas regiones de unión específicas de los dominios al armazón proteico son las regiones SARs. Se ha sugerido que estas regiones juegan un papel global durante la condensación de los cromosomas mitóticos y son necesarias para el mantenimiento de la estructura de los cromosomas. Las regiones SARs también podrían estar implicadas en la expresión génica, al facilitar tanto la transición como la expansión de una estructura abierta de la cromatina.

Modelos alternativos de la estructura cromosómica:
Es cada vez más evidente que incluso con los métodos de fijación más utilizados[28] se pueden producir cambios significativos en la localización de las proteínas cromosómicas, y estas dificultades técnicas han estado presentes en la mayor parte de las preparaciones cromosómicas utilizadas para realizar los estudios estructurales. Por ello, parece necesario utilizar muestras vivas siempre que sea posible, así como aproximaciones alternativas que permitan un análisis complementario.

La aproximación biofísica:
Un modo alternativo para el análisis estructural de los cromosomas es el biofísico. Las medidas precisas de la rigidez y la elasticidad de los cromosomas pueden guiar la construcción de los modelos estructurales. Estudios realizados en diferentes laboratorios indican que los cromosomas presentan una elasticidad remarcable: tanto dentro de las células como en tampones fisiológicos, los cromosomas pueden estirarse hasta varias veces su longitud normal y volver de nuevo a su longitud original. Sin embargo, los datos obtenidos por diferentes laboratorios son muy variables, probablemente debido a la variedad de tampones utilizado por los distintos grupos. Un estudio de Poirier y Marko en 2002 mostró que la elasticidad de los cromosomas es muy sensible a nucleasa. Estos datos sugieren que la integridad mecánica de los cromosomas mitóticos se mantiene por enlaces entre las fibras cromosómicas, no por la existencia de un armazón proteico. La naturaleza de estos enlaces no está clara, pero este estudio estima su frecuencia en 10-20 kb como mínimo.


pregutnas del profesor:
Answer the questions:
The table shows the base composition of genetic material from ten sources.
Source of genetic material Base composition (%)



A) Deduce the type of genetic material used by
• Cattle
• E.coli
• Influenza viruses
B) Suggest a reason for the difference between Cattle thymus gland, Spleen and sperm in the measurements of their base composition.
C) – Explain the reasons for the total amount of adenine plus guanine being close to 50% in the genetic material of many of the species in the table.
_Identify two other trends in the base composition of the species that have 50% adenine and guanine.
D) _ Identify a species shown in the table that does not follow the trends in base composition described in C)
_ Explain the reasons for the base composition of this species being different.

Desarrollo:

A.

-cattle: usa el material genetico de tipo de ADN, ya que no posee timina, si este fuese RNA no pudiese poseer timina, en su lugar tendria consigo uracilo y en la tabla se observa claramente que no lo posee, ya que se complementan sus bases y ademas aparece en esta que no tiene uracilo.

-E. coli: el denominado E. coli, también usa un material genetico de tipo de DNA, ya que este tampoco posee uracilo, posee timina y sus bases nitrogenadas se complementan, ademas en la tabla nos indican que no posee uracilo ya que aparece con el número 0.0.

-influenza viruses: posee un materia genetico de tipo de RNA, y que posee uracilo, contrario a los casos anteriores, en lugar de timina posee uracilo, en la tabla nos indica que posee 0.0 cantidades de timina mientras que posee 32.5 de porcentaje en la composicion de la influenza de viruses.

B. aunque poseean un mismo numero de azucar de cinco carbonos y un mismo numero de fosfato, poseen una diferencia notable de sus bases nitrogenadas, ya que cumplen una funcion distinta cada cual y necesitan tener esa estructura para poder realizar dicha funcion de una forma correcta.

C. -La razón por la cual la adenina y la guanina sumadas esten cerca del 50 porciento, es porque se necesia para la corecta estructura y funcion del ADN, ademas estas poseen caracteriscas similares, y es necesario que lleven cantidades parecidas continuamente, por lo cual se encuentran en una suma del 50 porciento.

-Si la cantidad de adenina y guanina es del 50 porciento, la de la timina y citocina es también del 50 porciento logicamente, en este caso la timina debe ser mayor que la citocina, ya que la timina es el complemento de la adenina y la adenina en el caso que estamos observando es mayor que la citosina.

D. la diferente es la influenza virus, ya que esta presenta condiciones de RNA por poseer uracilo, la diferencia de los porcentajes es por que la influenza de virus posee unas funciones y estructura diferentes.

domingo, 17 de octubre de 2010

tema 2: cariotipos




El cariotipo es un esquema, foto o dibujo de los cromosomas de una célula metafásica ordenados de acuerdo a su morfología (metacéntricos, submetacéntricos, telocéntricos, subtelocéntricos y acrocéntricos) y tamaño, que están caracterizados y representan a todos los individuos de una especie. El cariotipo es característico de cada especie, al igual que el número de cromosomas; el ser humano tiene 46 cromosomas (23 pares porque somos diploides o 2n) en el núcleo de cada célula,[1] organizados en 22 pares autosómicos y 1 par sexual (hombre XY y mujer XX).Cada brazo ha sido dividido en zonas y cada zona, a su vez, en bandas e incluso las bandas en subbandas, gracias a las técnicas de marcado.
El cariotipo es un esquema, foto o dibujo de los cromosomas de una célula metafásica ordenados de acuerdo a su morfología (metacéntricos, submetacéntricos, telocéntricos, subtelocéntricos y acrocéntricos) y tamaño, que están caracterizados y representan a todos los individuos de una especie. El cariotipo es característico de cada especie, al igual que el número de cromosomas; el ser humano tiene 46 cromosomas (23 pares porque somos diploides o 2n) en el núcleo de cada célula,
organizados en 22 pares autosómicos y 1 par sexual (hombre XY y mujer XX).Cada brazo ha sido dividido en zonas y cada zona, a su vez, en bandas e incluso las bandas en subbandas, gracias a las técnicas de marcado.
Cariotipo clásico
En el cariotipo clásico se suele utilizar una solución de Giemsa como tinción (específica para los grupos fosfato del ADN) para colorear las bandas de los cromosomas (Bandas-G), menos frecuente es el uso del colorante Quinacridina (se une a las regiones ricas en Adenosina-Timina). Cada cromosoma tiene un patrón característico de banda que ayuda a identificarla.

Los cromosomas se organizan de forma que el brazo corto de este quede orientado hacia la parte superior y el brazo largo hacia la parte inferior. Algunos cariotipos nombran a los brazos cortos p y a los largos q. Además, las diferentes regiones y subregiones teñidas reciben designaciones numéricas según la posición a la que se encuentren respecto a estos brazos cromosómicos. Por ejemplo, el síndrome de Cri du Chat implica una deleción en el brazo corto del cromosoma 5. Está escrito como 46, XX, 5p-. La región critica para este síndrome es la deleción de 15.2, la cual es escrita como 46,XX, del(5)(p15.2)
Cariotipo espectral


Historia :

Levitsky fue el primero en dar una definición a cariotipo como el aspecto fenotípico de los cromosomas somáticos, en contraste con su contenido de genes. Este concepto siguió siendo estudiado con los trabajos de Darlington y White.] La investigación y el interés por el estudio del cariotipo hizo que se planteara una pregunta : ¿cuántos son los cromosomas que contiene una célula diploide humana?

En 1912, Hans von Winiwarter demostró que el hombre tenia 47 cromosomas en spermatogonia y 48 en oogonia, concluyendo un mecanismo de determinación sexual XX/XO . Años después, en 1922 von Winiwarter no estaba seguro si el número cromosómico del hombre era 46 o 48. Para ello se necesitó un estudio más profundo para poder responder a esta pregunta.
Se usaron células en cultivo. Células pretratadas en una solución hipotónica, lo que hace que los cromosomas se extiendan y aumenten de tamaño.
Con una solución del colchicina detener el proceso de mitosis en la metafase.
Esto tomó hasta mediados de los años 1950 que fue cuando se dio como generalmente aceptado que el cariotipo de hombre incluye sólo 46 cromosomas. En los grandes monos el cariotipo es de 48 cromosomas por lo que se explicó que el cromosoma 2 de los humanos fue formado por una fusión de cromosomas hereditarios, reduciendo así el número de estos.
Diversidad y evolución del cariotipo:

Aunque la replicación del ADN y la transcripción del ADN están altamente estandarizadas en eucariotas, no puede decirse lo mismo de sus cariotipos, ya que son sumamente variable entre especies en el número de cromosomas y en la organización detallada a pesar de haber sido construidos con las mismas macromoleculas.
Esta variación proporciona la base para una gama de estudios que podría llamarse citología evolutiva.


Observaciones del cariotipo:
-Los cromosomas sufren grandes variaciones en su tamaño a lo largo del ciclo celular, pasando de estar muy poco compactados (interfase) a estar muy compactados (metafase).
-Diferencia de posición del centrómero.
-Las diferencias en el número básico de cromosomas puede ocurrir debido a desplazamientos sucesivos que quitan todo el material genético de un cromosoma, haciendo que este se pierda.
-Diferencias de grado y distribución de regiones de heterocromatina. La heterocromatina, es una forma inactiva de ADN condensada localizada sobre todo en la periferia del núcleo que se tiñe fuertemente con las coloraciones, tomando coloración más oscura que la cromatina.
La variación de estos cromosomas es encontrada frecuentemente:
-Entre sexos
-Entre gametos y el resto del cuerpo.
-Entre los miembros de una población.
-Variación geográfica






Preguntas del profesor:
Analizar 5 tipos de cariotipos que posean anormalidades..

-Sindrome de down:
El síndrome de Down (SD) es un trastorno genético causado por la presencia de una copia extra del cromosoma 21 (o una parte del mismo), en vez de los dos habituales (trisomía del par 21), caracterizado por la presencia de un grado variable de retraso mental y unos rasgos físicos peculiares que le dan un aspecto reconocible. Es la causa más frecuente de discapacidad psíquica congénita y debe su nombre a John Langdon Haydon Down que fue el primero en describir esta alteración genética en 1866, aunque nunca llegó a descubrir las causas que la producían. En julio de 1958 un joven investigador llamado Jérôme Lejeune descubrió que el síndrome es una alteración en el mencionado par de cromosomas.

No se conocen con exactitud las causas que provocan el exceso cromosómico, aunque se relaciona estadísticamente con una edad materna superior a los 35 años. Las personas con Síndrome de Down tienen una probabilidad algo superior a la de la población general de padecer algunas patologías, especialmente de corazón, sistema digestivo y sistema endocrino, debido al exceso de proteínas sintetizadas por el cromosoma de más. Los avances actuales en el descifrado del genoma humano están desvelando algunos de los procesos bioquímicos subyacentes al retraso mental, pero en la actualidad no existe ningún tratamiento farmacológico que haya demostrado mejorar las capacidades intelectuales de estas personas. Las terapias de estimulación precoz y el cambio en la mentalidad de la sociedad, por el contrario, sí están suponiendo un cambio cualitativo positivo en sus expectativas vitales.
-Síndrome de turner:
El síndrome Turner, síndrome Ullrich-Turner o monosomía X es una enfermedad genética caracterizada por la presencia de un solo cromosoma X. Genotípicamente son mujeres (por ausencia de cromosoma Y). A las mujeres con síndrome de Turner les falta parte o todo un cromosoma X. En algunos casos se produce mosaicismo, es decir que la falta de cromosoma X no afecta a todas las células del cuerpo.
La ausencia de cromosoma Y determina el sexo femenino de todos los individuos afectados, y la ausencia del segundo cromosoma X determina la falta de desarrollo de los caracteres sexuales primarios y secundarios. Esto confiere a las mujeres que padecen el síndrome de Turner un aspecto infantil e infertilidad de por vida. Incide, aproximadamente, en 1 de cada 2.500 niñas.
El nombre "síndrome Turner" proviene del médico Dr. Henry Turner, quien fue el primero en describir el conjunto de descubrimientos en 1938. No fue sino hasta 1959 que se identificó la causa del síndrome Turner (la presencia de un sólo cromosoma X). Otros nombres alternativos son síndrome Bonnevie-Ullrich o disgenesia gonadal.
Usualmente es esporádico, lo que significa que no es heredado de uno de los padres. En pocos casos, uno de los padres lleva silenciosamente cromosomas reorganizados que pueden ocasionar el síndrome de Turner en una hija; esta es la única situación en la que este síndrome es heredado. Existen muchas manifestaciones de este síndrome pero los rasgos principales son: baja estatura, piel del cuello ondulada, desarrollo retardado o ausente de las características sexuales secundarias, ausencia de la menstruación, coartación (estrechamiento) de la aorta y anomalías de los ojos y huesos. La condición se diagnostica ya sea al nacer, a causa de anomalías asociadas, o en la pubertad cuando existe ausencia o retraso de la menstruación y se presenta un retraso en el desarrollo de las características sexuales secundarias normales.
-El examen físico revela genitales y mamas subdesarrollados, cuello corto, baja estatura y desarrollo anormal del tórax.
-El cariotipo muestra 45 cromosomas con un modelo de 44 X, o es decir, un cromosoma sexual ausente.
-El ultrasonido puede revelar órganos reproductores femeninos pequeños o subdesarrollados.
-El examen ginecológico puede revelar sequedad del recubrimiento de la vagina.
-La hormona luteinizante sérica se encuentra elevada.
-La hormona foliculoestimulante sérica se encuentra elevada.
-Síndrome de klinefelter:
El síndrome de Klinefelter es una anomalía cromosómica que afecta solamente a los hombres y ocasiona hipogonadismo.
El sexo de las personas está determinado por los cromosomas X e Y. Los hombres tienen los cromosomas 44XY (46) y las mujeres tienen los cromosomas 44XX (46). En el síndrome de Klinefelter se pueden presentar los cromosomas 44XXY (47), 44XXXY (48), 44XXYY(48), 44XXXXY (49), etc y los llamados "mosaicos" o "mosaicismos" 46XY / 47XXY.
Es una alteración genética que se desarrolla por la separación incorrecta de los cromosomas homólogos durante las meiosis que dan lugar a los gametos de uno de los progenitores, aunque también puede darse en las primeras divisiones del cigoto.
Se cree que Carlos II de España sufrió este síndrome, debido fundamentalmente a los sucesivos matrimonios endogámicos de sus antepasados y falta de sangre nueva.
No todas estas manifestaciones se dan en un mismo individuo:
-Talla elevada
-Mayor acumulación de grasa subcutánea
-Dismorfia facial discreta
-Alteraciones dentarias
-En ocasiones criptorquidia, micropene, escroto hipoplásico o malformaciones en los genitales.
-Esterilidad por azoospermia.
-Ginecomastia uni o bilateral
-Vello pubiano disminuido
-Gonadotrofinas elevadas en la pubertad
-Disminución de la libido
-Retraso en el área del lenguaje, lectura y comprensión
-Lentitud, apatía.
-Trastornos emocionales, ansiedad, depresión, etc.
-Falta de autoestima.


Síndrome de patau:
El síndrome de Patau, es una enfermedad genética que resulta de la presencia de un cromosoma 13 suplementario. El cariotipo da 47 cromosomas y sirve de diagnóstico prenatal por amniocentesis o cordiocentesis sobre todo si los padres optan por el aborto. Se trata de la trisomía menos frecuente, descubierta en 1960 por Patau. Se suele asociar con un problema meiótico materno, más que paterno y como el síndrome de Down, el riesgo aumenta con la edad de la mujer. Los afectados mueren poco tiempo después de nacer, la mayoría a los 3 meses, como mucho llegan al año. Se cree que entre el 80-90% de los fetos con el síndrome no llegan a término.
El feto presenta un retraso en el desarrollo y uno o varios de los siguientes síntomas:
-Anomalías en el sistema nervioso
-Retraso mental
-Holoprosencefalia (50% de los casos)
-Dilatación de la bifurcación ventricular
-Alargamiento del surco posterior
-Anomalías faciales
-Disminución de distancia interorbital (hipotelorismo), puede existir anoftalmía (aspecto de cíclope) y coloboma.
-Labio leporino. Ausencia de paladar
-Trastornos en la lengua, aparición de más de dos narinas.
-Anomalías renales
-Hidronefrosis
-Aumento de tamaño del riñón
-Anomalías cardíacas
-Comunicación interventricular
-Displasia valvular
-Tetralogía de Fallot
-Anomalías de miembros
-Polidactilia
-Pie vago
-Anomalías en abdomen
Onfalocele
Extrofía vesicular
Hipotonía muscular

Síndrome de edwars:
El síndrome de Patau, trisomía en el par 13 o trisomía D es una enfermedad genética que resulta de la presencia de un cromosoma 13 suplementario. El cariotipo da 47 cromosomas y sirve de diagnóstico prenatal por amniocentesis o cordiocentesis sobre todo si los padres optan por el aborto. Se trata de la trisomía menos frecuente, descubierta en 1960 por Patau. Se suele asociar con un problema meiótico materno, más que paterno y como el síndrome de Down, el riesgo aumenta con la edad de la mujer. Los afectados mueren poco tiempo después de nacer, la mayoría a los 3 meses, como mucho llegan al año. Se cree que entre el 80-90% de los fetos con el síndrome no llegan a término.
El feto presenta un retraso en el desarrollo y uno o varios de los siguientes síntomas:
-Anomalías en el sistema nervioso
-Retraso mental
-Holoprosencefalia (50% de los casos)
-Dilatación de la bifurcación ventricular
-Alargamiento del surco posterior
-Anomalías faciales
-Disminución de distancia interorbital (hipotelorismo), puede existir anoftalmía (aspecto de cíclope) y coloboma.
-Labio leporino. Ausencia de paladar
-Trastornos en la lengua, aparición de más de dos narinas.
-Anomalías renales
-Hidronefrosis
-Aumento de tamaño del riñón
-Anomalías cardíacas
-Comunicación interventricular
-Displasia valvular
-Tetralogía de Fallot
-Anomalías de miembros
-Polidactilia
-Pie vago
-Anomalías en abdomen
Onfalocele
Extrofía vesicular
Hipotonía muscular

sábado, 16 de octubre de 2010

tema 3: tecnicas de analizis de DNA

Análisis del ADN(también llamada pruebas de ADN o Huella genética) es una técnica utilizada para distinguir entre los individuos de una misma especie utilizando muestras de su ADN. Su invención se debe el doctor Alec Jeffreys en la Universidad de Leicester en 1984 y fue utilizada por primera vez en medicina forense para condenar a Colin Pitchfork en los asesinatos de Narborough (UK) en 1983 y 1986.
La técnica se basa en que dos seres humanos tienen una gran parte de su secuencia de ADN en común y para distinguir a dos individuos se puede explotar la repetición de secuencias altamente variables llamada microsatélites. Dos seres humanos no relacionados será poco probable que tengan el mismo número de microsatélites en un determinado locus. En el SSR/STR de perfiles (que es distinto de impronta genética) la reacción en cadena de polimerasa (PCR) se utiliza para obtener suficiente ADN para luego detectar el número de repeticiones en varios Loci. Es posible establecer una selección que es muy poco probable que haya surgido por casualidad, salvo en el caso de gemelos idénticos, que tendrán idénticos perfiles genéticos pero no las huellas dactilares.
La huella genética se utiliza en la medicina forense, para identificar a los sospechosos con muestras de sangre, cabello, saliva o semen. También ha dado lugar a varias exoneraciones de condenados. Igualmente se utiliza en aplicaciones como la identificación de los restos humanos, pruebas de paternidad, la compatibilidad en la donación de órganos, el estudio de las poblaciones de animales silvestres, y el establecimiento del origen o la composición de alimentos. También se ha utilizado para generar hipótesis sobre las migraciones de los seres humanos en la prehistoria.
Los microsatélites muestran una mayor variación que el resto del genoma ya que en ellos se encuentran unas secuencias en distinta repetición y con diferente grado de recombinación debido a la inestabilidad del locus.
Análisis de RFLP:
El análisis consiste en hacer un Southern Blotting (o "Southern blot" que es un método de biología molecular que sirve para verificar si una determinada secuencia de ADN está o no presente en una muestra de ADN analizada) y usar sondas específicas para detectar los VNTR (repeticiones en tandem de número variable).
En primer lugar el ADN que se va a analizar se separa de otros materiales. A continuación, debe cortarse en piezas de diferentes tamaños usando enzimas de restricción, que son proteínas que cortan el ADN sin dañar las bases. las piezas son clasificadas por tamaño mediante electroforesis en gel. Las piezas con carga positiva se van a la parte superior. El ADN que tiene una ligera carga negativa natural es atraído hacia el fondo. Las piezas más pequeñas se mueven más rápidamente a través del gel, por lo que será aún más hacia la parte inferior de las piezas grandes. Al separar las piezas por tamaño, los más altos se mantienen arriba y los más pequeños debajo. Luego por calor o solución alcalina, se aplica gel con el fin de desnaturalizar el ADN y se separa en fragmentos individuales. Una vez realizado esto el ADN esta ahora listo para ser analizados utilizando una sonda radiactiva de reacción de hibridación.
Para hacer la sonda radiactiva, se necesita la polimerasa del ADN. El ADN que se va someter a la radiactividad se coloca en un tubo de ensayo. A continuación se agrega la polimerasa en el tubo. Se disuelve y se espera a que comience a funcionar. Como los parches de polimerasa de ADN rompen el ADN, los actuales son sustituidos por los nuevos nucleótidos en el tubo. Cada vez que la muestra tenga una base Guanina, la Citosina será puesta en radiactividad. En la repetición del ADN, la polimerasa también se vuelve radioactiva. Las piezas radioactivas están listas para su utilización. Ahora la sonda radioactiva puede ser usada para crear una reacción de hibridación. La hibridación sucede cuando dos secuencias genéticas se unen a causa del hidrógeno que se encuentra en los pares de las bases. Hay dos de estos entre Adenina o Timina y tres de Citosina o Guanina. Para realizar la hibridación el ADN tiene que estar desnaturalizado.
El ADN desnaturalizado radioactivo y la sonda deber ser puestos en una bolsa de plástico con líquido salino y sellado fuertemente. La sonda se adherirá a la desnaturalización de ADN dondequiera que se encuentre de forma apropiada. La sonda y el ADN no tienen que encajar de forma exacta. Este proceso termina haciendo un patrón de ADN de las huellas digitales. Toda persona tiene un VNTRs que ha heredado de uno de sus padres y los VNTRs son únicos para cada persona.
Análisis por PCR:
La reacción en cadena de la polimerasa (conocida como PCR por sus siglas en inglés, Polymerase Chain Reaction) permite amplificar más de un millón de veces un ADN obtenido a partir de una región seleccionada del genoma, siempre y cuando se conozca una parte de su secuencia de nucleótidos. Esta técnica fue ideada en 1989 por Kary B. Mullis que obtuvo el premio Nobel de Química en 1993 por dicho invento.
Para la PCR se utilizan dos oligonucleótidos sintéticos de unos 15-20 nucleótidos que son complementarios a las zonas flanqueantes de la región que se quiere amplificar. Estos oligonucleótidos (habitualmente conocidos por su nombre en inglés, "primers") actúan como cebadores para la síntesis in vitro de ADN la cual está habitualmente catalizada por una enzima llamada Taq polimerasa. Dicha enzima se aísla de una bacteria termófila, denominada Thermus Aquáticus, que es capaz de crecer a temperaturas elevadas (79 - 85 º C). A esta temperatura dicha enzima es capaz de mantener una media de extensión de más de 60 nucleótidos por segundo en regiones ricas en uniones G-C. La temperatura optima a la que actúa la Taq polimerasa permite el uso de elevadas temperaturas para la unión de los primeros y para la extensión, de esta manera se aumenta el nivel de exigencia de la reacción y se reduce la extensión de los primeros unidos inespecíficamente al ADN.
La reacción se lleva a cabo en una serie de ciclos cada uno de los cuales incluye tres fases o pasos:

DESNATURALIZACIÓN: Para que comience la reacción es necesario que el ADN molde se encuentre en forma de cadena sencilla. Esto se consigue aplicando temperaturas de 90 a 95ºC que producen la rotura de los puentes de hidrógeno intercatenarios y por lo tanto la separación de ambas cadenas. Para conseguir la completa separación de las hebras de toda la muestra esta temperatura debe mantenerse unos minutos. Si el ADN solo se desnaturaliza parcialmente éste tenderá a renaturalizarse rápidamente, evitando así una eficiente hibridación de los primeros y una posterior extensión.
HIBRIDACIÓN: Esta fase se denomina también fase de “annealing” o de emparejamiento. Una vez que el ADN está desnaturalizado se disminuye la temperatura hasta un rango comprendido entre los 40 y los 60ºC para que se pueda producir la unión de los primeros a las secuencias flanqueantes del fragmento que se va a amplificar. La temperatura de fusión o annealing (Tm, “melting temperature”) depende de varios factores y es relativamente específica para cada primer. La longitud de los primers y la secuencia son críticas en la designación de los parámetros de una amplificación, una fórmula simple para calcular la Tm es la siguiente:
Tm = 4(G+C) + 2 (A+T).
No obstante, cada primer exige una serie de estudios experimentales para determinar su temperatura de annealing específica ya que si la temperatura es muy baja la unión se hará de forma inespecífica y si es muy alta no se producirá una unión completa.
EXTENSIÓN: Durante este paso la Taq polimerasa incorpora nucleótidos en el extremo 3' del primer utilizando como molde la cadena de ADN previamente d


align="justify">esnaturalizada. La temperatura a la que se lleva a cabo este paso suele ser de 72ºC ya que es la temperatura a la que la Taq polimerasa alcanza su máxima actividad. Normalmente una extensión de 20 segundos es suficiente para fragmentos menores de 500 pb, y 40 segundos para fragmentos por encima de 1.2Kb.
Un factor importante en el transcurso de las diferentes fases es el tiempo de rampa. Este se define como el tiempo invertido en pasar de una temperatura a otra y depende del diseño y de las características del aparato donde se realiza automáticamente este proceso, el termociclador. En las nuevas generaciones de termocicladores este factor se ha ido optimizando para hacerlo mínimo.
AmpFLP:
Se trata de una técnica de amplificación de regiones polimórficas (con muchos polimorfismos), preferiblemente el lócus D1S80. Este análi.sis pueden ser automatizado, y permite la fácil creación de árboles filogenéticos basados en la comparación de las muestras individuales de ADN.
Basado en el número variable de repetición en el tandem (VTNR) para distinguir diversos polimorfismos alelos, que son separados en un gel de poliacrilamida utilizado en una escalera alelica (en oposición a un peso molecular). Bandas podrían ser visualizados por tinción de gel de plata. Un lugar popular para la toma de huellas dactilares es el locus D1S80. Al igual que los métodos basados en PCR, el ADN degradado o en cantidades muy pequeñas de ADN puede causar alélica de abandono.
Análisis STR:
Consiste en la amplificación de secuencias con pequeñas repeticiones en tandem que no se conservan dentro de la especie. Una vez amplificadas se separan los fragmentos para comprobar el número de repeticiones (mediante electroforesis capilar o en gel), de forma que se pueden distinguir patrones de repeticiones que pueden ser comparables y asociables.

Este método usa regiones altamente polimórficas que tienen secuencias cortas repetidas de ADN (el más común es de 4 bases repetidas, pero hay otras longitudes en uso, incluyendo bases 3 y 5). Porque diferentes personas tienen diferentes números de unidades de repetición y estas regiones de la DNA se puede utilizar para diferenciar entre las personas. Estos STR loci (lugares) son atacados con primeros específicos de secuencia y se



amplifican mediante PCR. Los fragmentos de ADN que son resultado entonces detectados y separados mediante electroforesis. Existen dos métodos de separación y detección, la electroforesis capilar (CE) y la electroforesis en gel.

Los polimorfismos STR mostrados en cada región son de por sí muy comunes, por lo general, cada polimorfismo es compartida por alrededor de un 5 - 20% de las personas. Cuando observamos múltiples loci, es la única combinación de estos polimorfismos de un individuo que hace que este método de discriminación sea un instrumento de identificación. Las regiones STR que se ponen a prueba en una persona se convierten en una discriminación de la prueba.

De un país a otro existen diferentes sistemas STR en el análisis de ADN que están en uso. En América del Norte los sistemas que amplifican el CODIS 13 loci núcleo son casi universal, mientras que en el Reino Unido, el sistema de SGM +, que es compatible con la base de datos nacional de ADN esta en uso. Cualquiera que sea el sistema utilizado, muchas de las regiones STR usadas en la prueba son los mismas. Estos sistemas de análisis de ADN se basan en torno a las reacciones múltiplex, el cual muchas regiones STR será sometido a prueba en el mismo tiempo.

Estructura del ADN.La Electroforesis capilar (movimiento mediante la aplicación de un campo eléctrico), permite la inyección de fragmentos de ADN en un tubo de vidrio delgado (capilar) llena de polímeros. El ADN es extraído a través del tubo por la aplicación de un campo eléctrico, la separación de los fragmentos ocurre de tal manera que los más pequeños fragmentos de viajan más rápido a través de los capilares. Los fragmentos son entonces detectados utilizando colorantes fluorescentes que se adjunta a los primeros utilizados en la PCR. Esto permite que múltiples fragmentos amplificados se ejecuten de manera simultánea, algo conocido como multiplexación. Luego se asignan tallas utilizando el tamaño del ADN como normas de etiquetado que se añaden a cada muestra, y el número de repeticiones se determinan comparando el tamaño de la escalera alélica, que contiene una muestra de todos los tamaños comunes de las posibles repeticiones. Aunque este método es costoso, con mayor capacidad de las máquinas y un mayor rendimiento de las que se están utilizando para reducir el costo/muestra es posible reducir los retrasos que existen en muchas instalaciones de la delincuencia gobierno.

Electroforesis en gel es uno de los actos que es utilizado usando principios similares conocidos como "CE", pero en lugar de utilizar un capilar, el gran gel de poliacrilamida se utiliza para separar los fragmentos de ADN. Un campo eléctrico es aplicado, como en la CE, pero en lugar de correr todas las muestras por un detector, los fragmentos más pequeños se ejecutan cerca de la parte inferior del gel y todo el gel es escaneado y guardado en un ordenador. Esto produce una imagen que muestra todos los de las bandas correspondientes a diferentes tamaños y repite la escalera alélica. Este método no requiere el uso de las normas de tamaño, ya que la escalera alélica se ejecuta junto con las muestras y sirve para este propósito. La visualización puede ser a través de la utilización de marcados tintes fluorescentes primeros en la tinción de plata o por el gel antes de escanear. A pesar de que es rentable y puede ser de bastante alto rendimiento, para aplicar la tinción de plata ITS se suspende. Además, muchos laboratorios están eliminación gradualmente geles a favor de la CE, haciendo el costo de las máquinas se haga más manejable.

El verdadero poder del análisis STR se encuentra en el poder estadístico de la discriminación. En los EE.UU., hay 13 centrales loci (lugares de ADN) que se utilizan actualmente para la discriminación en el CODIS. Debido
a que estos lugares usan una variedad de forma independiente (con un determinado número de repeticiones en un locus no cambia la probabilidad de tener cualquier número de repeticiones en cualquier otro lugar), el producto de la regla de probabilidades se pueden aplicar. Esto significa que si alguien tiene el ADN de tipo ABC, en el que los tres loci son independientes, podemos decir que la probabilidad de que ese tipo de ADN es la probabilidad de tener tipo A veces la probabilidad de tener el tipo B veces es la probabilidad de tener el tipo de C. El método de mayor prevalencia de ADN de las huellas dactilares utilizados en la actualidad está basado en la PCR y utiliza corto repite tándem (STR). Este método usa regiones altamente polimórficas que han repetido secuencias cortas de ADN (el más común es de 4 bases repetidas, pero hay otras longitudes en uso, incluyendo bases 3 y 5). Porque diferentes personas tienen diferentes números de unidades de repetición, estas regiones de la DNA se pueden utilizar para discriminar entre las personas. Estos STR loci (lugares) son atacados con primeros específicos de secuencia y se amplifican mediante PCR. Los fragmentos de ADN que son resultado entonces detectados y separados mediante electroforesis. Existen dos métodos de separación y detección, la electroforesis capilar (CE) y la electroforesis en gel.

Los polimorfismos STR mostradas en cada región son de por sí muy común, por lo general, cada polimorfismo será compartido por alrededor de un 5 - 20% de las personas. Cuando observamos múltiples loci, la única combinación de estos polimorfismos de un individuo hace que este método de la discriminación sea un instrumento de identificación. Las demás regiones STR que se ponen a prueba en una persona se convierten en una discriminación de la prueba.
Debido a su costo relativamente bajo y la facilidad para su puesta en marcha y operación, AmpFLP sigue siendo popular en los países de bajos ingresos.
Análisis del cromosoma Y:
Se han creado cebadores específicos para regiones del cromosoma Y que amplifican secuencias solo heredadas por parte paterna. Por e
llo, este tipo de análisis sólo sirve para comparar familiares por parte del padre y varones.








Análisis mitocondrial:
Se usa en muestras muy degradadas, ya que el DNA mitocondrial posee más copias que el nuclear. Se amplifican las regiones HV1 y HV2 y se comparan siempre con familiares por parte materna ya que las mitocondrias son herencia exclusiva de la madre. Los científicos forenses amplían la región HV1 y HV2 del ADNmt y luego cada región es secuenciada en un único nucleótido y se compara las diferencias con la referencia.
preguntas del profesor:
1. ¿Son las muestras de sangre mejores que las bucales?
No exactamente, depende de lo que se este trabajando y el equipo, por ejemplo si se tiene un equipo de gran tecnologia y se estan realizando trabajos de investigacion forences, en la que se requiere 100% de compatibilidad, son más importantes las pruebas de sangre, ya que siempre que se comete algun delito existe una agresion que causa traumas fisicos en las personas, tanto como en el agresor como en la victima, si se tiene la muestra de sangre ya el resto sera investigacion en un laoratorio.

2.¿Que tan precisos son los resultados en las pruebas de ADN?¿Que quiere decir 100% exclusión de paternidad?
Son muy exactos si se esta comprobando una investigacion forence y se encuentra el criminal, tiene que tener 100% de compatibilidad, si no es asi se descartara la persona. Si se esta buscando una prueba de paternidad y se encuentra que el señor es el padre decierta persona puede llegar a tener 99% de compatibilidad. 100% de exclucion paternal significa que el supuesto padre biologico que se esta buscando no es ese, ya q no tienen nunguna compatibilidad en su ADN.
3.¿Es necesario que la madre también se analice?
Si es para una prueba de paternidad no es necesario, ya que se analiza el 50% de ADN del niño y del padre el 100%. Pero si es en caso de alguna desaparición si seria necesario hacerla.
4.¿Se puede hacer pruebas de paternidad prenatales?
Si se pueden hacer pero resulta muy riesgoso tanto como para el feto como para la made, puede llegar a causar la muerte.
5.¿Se puede hacer una prueba de paternidad sin el consentimiento de la madre? Desde el punto de vista legal habira que revisar la constitución del país, pero desde el punto de vista moral se pueden hace, ya que cada uno tiene derecho de saber si cierto niño es su hijo, pero si son pruebas prenatales no se deben hacer
6.¿Porque algunos resultados de indice combinado de paternidad dan 99.98% y otros 99.9999995% ?, por ejemplo
Por la secuencia de los nucleótidos, en ambos casos si se demuestra que se es padre, por ejemplo si algo fallo en los equipos daría un 99.98% y si no daría 99.9999995%, pero esto no es una diferencia significativa



viernes, 15 de octubre de 2010

tema 4: modificacioin genética y sus usos

Un organismo modificado genéticamente (abreviado OMG, OGM o GMO, este último del inglés Genetically Modified Organism) es aquel cuyo material genético es manipulado en laboratorios donde ha sido diseñado o alterado deliberadamente con el fin de otorgarle alguna característica específica. Comúnmente se los denomina transgénicos y son creados artificialmente en laboratorios por ingenieros genéticos.
Las técnicas de ingeniería genética que se usan consisten en aislar segmentos del ADN (material genético) para introducirlos en el genoma (material hereditario) de otro, ya sea utilizando como vector otro ser vivo capaz de inocular fragmentos de ADN (Agrobacterium tumefaciens, una bacteria), ya sea bombardeando las células con macropartículas recubiertas del ADN que se pretenda introducir, u otros métodos físicos como descargas eléctricas que permitan penetrar los fragmentos de ADN hasta el interior del núcleo, a través de las membranas celulares.
Al ser la manipulación en el material genético, este es hereditario, puede transferirse a la siguiente generación salvo que la modificación esterilice al organismo transgénico.
La modificación genética de organismos es objeto de una fuerte controversia:
-Por una parte, organizaciones ecologistas en todo el mundo como Greenpeace y WWF entre otras, advierten de los problemas encontrados en los OGM, que pueden descontrolarse a medida que estos organismos se expanden por acción de los vientos y las aves, contaminando cultivos naturales.
-Existe una fuerte oposición por las posibles consecuencias de la extensión de este tipo de cultivos, que ha llevado a algunos países a establecer moratorias o prohibirlos, y ha llevado en algunos casos a disturbios, como la quema de campos de OGM en algunas zonas de Europa.
-A menudo sus defensores apuntan que este tipo de tecnología puede servir para mitigar el hambre en el mundo, y para reducir la acción de una serie de enfermedades (por ejemplo, es posible preparar arroz que resulte más rico en ciertos nutrientes, previniendo la aparición de enfermedades carenciales, o vacas que den leche con vacunas o antibióticos).
-Por otra parte, las grandes multinacionales tienen una serie de patentes que pueden limitar los beneficios de esta tecnología a los intereses de sus accionistas.
-Estas tecnologías requieren una fuerte inversión, y al ser las empresas que los desarrollan las que financian la práctica totalidad de los estudios realizados, se crea un conflicto de intereses que puede dar lugar a desconfianza sobre los estudios.
-Algunas multinacionales de los transgénicos desinforman deliberadamente. En dos ocasiones la Agencia de Protección Ambiental de los Estados Unidos ha encontrado científicos falsificando deliberadamente los resultados de las pruebas realizadas en los laboratorios de investigación contratados por Monsanto para estudiar los efectos del glifosato. El 20 de enero de 2007, la Justicia francesa declaró a Monsanto culpable de publicidad engañosa por presentar al Roundup como biodegradable y alegar que el suelo permanecía limpio después de su uso.

tecnicas de modificacion genetica:

Clonación:
Se deben tomar en cuenta las siguientes características:
-En primer lugar se necesita clonar las moléculas ya que no se puede hacer un órgano o parte del "clon" si no se cuenta con las moléculas que forman a dicho ser, aunque claro para hacer una clonación necesitamos saber que es lo que buscamos clonar.
-Ser parte de un animal ya desarrollado, porque la clonación responde a un interés por obtener copias de un determinado animal que nos interesa, y sólo cuando es adulto conocemos sus características.
-Por otro lado, se trata de crearlo de forma asexual. La reproducción sexual no nos permite obtener copias idénticas, ya que este tipo de reproducción por su misma naturaleza genera diversidad.
• Clonación molecular:
La clonación molecular se utiliza en una amplia variedad de experimentos biológicos y las aplicaciones prácticas que van desde la toma de huellas dactilares a producción de proteínas a gran escala.
En la práctica, con el fin de amplificar cualquier secuencia en un organismo vivo, la secuencia a clonar tiene que estar vinculada a un origen de replicación; que es una secuencia de ADN
-Transfección: Se introduce la secuencia formada dentro de células.
-Selección: Finalmente se seleccionan las células que han sido transfretadas con éxito con el nuevo ADN.
Inicialmente, el ADN de interés necesita ser aislado de un segmento de ADN de tamaño adecuado. Posteriormente, se da el proceso de ligación cuando el fragmento amplificado se inserta en un vector de clonación: El vector se linealiza (ya que es circular), usando enzimas de restricción y a continuación se incuban en condiciones adecuadas el fragmento de ADN de interés y el vector con la enzima ADN ligasa.
Tras la ligación del vector con el inserto de interés, se produce la transfección dentro de las células, para ello las células transfretadas son cultivadas; este proceso, es el proceso determinante, ya que es la parte en la que vemos si las células han sido transfretadas exitosamente o no.


• Clonación celular
Clonar una célula consiste en formar un grupo de ellas a partir de una sola. En el caso de organismos unicelulares como bacterias y levaduras, este proceso es muy sencillo, y sólo requiere la inoculación de los productos adecuados.
Sin embargo, en el caso de cultivos de células en organismos multicelulares, la clonación de las células es una tarea difícil, ya que estas células necesitan unas condiciones del medio muy específicas.
Una técnica útil de cultivo de tejidos utilizada para clonar distintos linajes de células es el uso de aros de clonación (cilindros).
De acuerdo con esta técnica, una agrupación de células unicelulares que han sido expuestas a un agente mutagénico o a un medicamento utilizado para propiciar la selección se ponen en una alta dilución para crear colonias aisladas; cada una proviniendo de una sola célula potencialmente y clónicamente diferenciada.
En una primera etapa de crecimiento, cuando las colonias tienen sólo unas pocas células; se sumergen aros estériles de poliestireno en grasa, y se ponen sobre una colonia individual junto con una pequeña cantidad de tripsina.
Las células que se clonan, se recolectan dentro del aro y se llevan a un nuevo contenedor para que continúe su crecimiento.






• Clonación terapéutica o andropatrica:
La clonación terapéutica o andropatrica tiene fines terapéuticos, y consiste en obtener células madre del paciente a tratar, atendiendo al siguiente experimento: Se coge una célula somática cualquiera del paciente a tratar, se aísla el núcleo con los cromosomas dentro y se desecha todo lo demás.
Por otro lado, obtenemos un óvulo sin fecundar y extraemos su núcleo con sus cromosomas, para así introducir en éste el núcleo aislado anteriormente de la célula somática. A continuación se estimula el óvulo con el núcleo comenzando así la división celular del embrión clonado.
Este embrión será un clon del paciente a tratar. Dejamos que el embrión se desarrolle hasta llegar a la fase clave: el blastocisto.
En esta fase extraemos la célula madre de la masa celular obtenida que tiene el mismo ADN que el paciente, y por lo tanto no causará rechazo cuando se inyecte.
Un ejemplo de este tipo de clonación es la clonación de la oveja Dolly (5 de julio de 1996 - 14 de febrero de 2003).


• Clonación en la investigación con células madre:
La transferencia nuclear de células somáticas puede utilizarse también para crear un embrión clonado. El objetivo no es clonar seres humanos, sino (como ya hemos dicho anteriormente) cosechar células madre que pueden ser utilizadas para estudiar el desarrollo humano y realizar estudios sobre enfermedades de interés.













• Clonación de organismos de forma natural:
La clonación de un organismo es crear un nuevo organismo con la misma información genética que una célula existente. Es un método de reproducción asexual, donde la fertilización no ocurre. En términos generales, sólo hay un progenitor involucrado. Esta forma de reproducción es muy común en organismos como las amebas y otros seres unicelulares, aunque la mayoría de las plantas y hongos también se reproducen asexualmente.

También se incluye la obtención de gemelos idénticos de manera natural o artificial. La forma natural se considera como una alteración espontánea durante el desarrollo embrionario, ignorándose su causa, aunque existe una correlación familiar estadísticamente significativa. El método artificial se realiza por separación mediante manipulación de los blastómeros, debilitando las uniones celulares con tripsina y medio pobre en Ca2+, o manualmente partiendo el blastocisto por la mitad (muy corriente en vacas).

Preguntadel profesor:

¿Cuales son Beneficios y riesgos de la modificacion genetica de dos de sus tecnicas a nivel personal?

Ya que mis tecnicas son acerca de la clonacion el analisis lo hare solo de este metodo que tiene variedad de tecnicasparapoderlo realizar.
BENEFICIOS: los beneficion de una clonacion son que se podria tener otro ser igual a otro, pero si se llegan a clonar humanos seria algo positivo en cuanto que el trabajo seria mucho mas rapido,pues tendria la misma capacidad de llegar a analizar un caso, siempre que hayan tenido los mismos conocimientos(estudiando de igual forma, haber presenciado eventos que los ayuden a mejorar su analisis, etc) ya que cuando se hace una clonacion no se transifieren los mismos conocimientos.
RIESGOS: los riesgos son que si se clona una persona que le hace daño a la sociedad seria un peligro, pues como seria clonar a personas como hitler; que provoco una guerra mundial, ademas seriamuy malo uno tener a alguien que sea igual que uno ya que si este comete algo indevido como un crimen, estariamos en la carcel.

sábado, 11 de septiembre de 2010

tema 5: beneficios y riesgos de la modificacion genetica

Ventajas :


-Mejoras en el proceso industrial
En cuanto a las aplicaciones en agronomía y mejora vegetal en sentido amplio, poseen tres ventajas esenciales:
-Una gran versatilidad en la ingeniería, puesto que los genes que se incorporan al organismo huésped pueden provenir de cualquier especie, incluyendo bacterias.
-Se puede introducir un solo gen en el organismo sin que esto interfiera con el resto de los genes; de este modo, es ideal para mejorar los caracteres mono génicos, es decir, codificados por un sólo gen, como algunos tipos de resistencias a herbicidas.
-El proceso de modificación genética demora mucho menos qu
e las técnicas tradicionales de mejoramiento por cruzamiento; la diferencia es de años, en frutales, a meses.
-Ventajas para los consumidores:
-Que fundamentalmente afectan a la calidad del producto final; es decir, a la modificación de sus características.
-Producción de nuevos alimentos
-Posibilidad de incorporar características nutricionales distintas en los alimentos
-Vacunas indiscriminadas comestibles, por ejemplo: tomates con la vacuna de la hepatitis B.
-Ventajas para los agricultores
-Mejoras agronómicas relativas a la metodología de producción y su rendimiento.
-Aumento de la productividad y la calidad aparente de los cultivos:
-Resistencia a plagas y enfermedades conocidas; por ejemplo, por inclusión de toxinas bacterianas, como las de Bacillus thuringiensis específicas contra determinadas familias de insectos.
-Tolerancia a herbicidas (como el glifosato o el glufosinato), salinidad, fitoextracción en suelos metalíferos contaminados con metales pesados, sequías y temperaturas extremas.
-Rapidez:
El proceso de modificación genética demora mucho menos que las técnicas tradicionales de mejora por cruzamiento, que requiere varias generaciones para eliminar otros genes que se introdujeron en el mismo cruzamiento.
-Ventajas para el ambiente:
Algunas variedades transgénicas han permitido una simplificación en el uso de productos químicos, como en el caso del maíz Bt, donde el combate de plagas ya no requiere el uso de insecticidas químicos de mayor espectro y menor biodegradabilidad.
-Nuevos materiales:
Además de la innovación en materia alimentaria, la ingeniería genética permite obtener cualidades novedosas fuera de este ámbito; por ejemplo, por producción de plásticos biodegradables y biocombustibl
es.


Inconvenientes:
-Resistencia a los antibióticos:
Para localizar las células en que se ha incorporado y activado el gen introducido, un método común es la introducción de genes que determinan cierta resistencia a unos antibióticos, de modo que al añadir el antibiótico sobreviven solo las células resistentes, con el gen de resistencia incorporado y activo, y probablemente también con el gen que se desea introducir. Dicho método se utiliza con el fin de verificar que el gen de interés haya sido efectivamente incorporado en el genoma del organismo huésped. Estos genes acompañantes son denominados marcadores, y no son necesarios para el resultado final, solo simplifican el proceso para lograrlo. Existen otros marcadores que no tienen relación con la resistencia a quimioterápicos, como los de auxotrofía. Se teme que la inclusión de estos elementos en los alimentos transgénicos podría hacer que la resistencia a los antibióticos se transmitiera a las bacterias de la flora intestinal, y de esta a organismos patógenos. No obstante, por orden de la FAO los alimentos transgénicos comercializados deberían carecer de los mencionados genes de resistencia.
-Mayor nivel de residuos tóxicos en los alimentos:
Los cultivos de OMG conllevan un mayor uso de pesticidas. Un estudio basado en los datos del Departamento de Agricultura de los EUA ha demostrado que, en 2008, los cultivos transgénicos han necesitado un 26% más de pesticidas por hectárea que las variedades convencionales.
La posibilidad de usar intensivamente insecticidas a los que son resistentes los transgénicos hace que se vean afectadas y dañadas las especies colindantes (no resistentes). No obstante, existen evidencias científicas de que los cultivos de transgénicos resistentes a insecticidas permiten un menor uso de éstos en los campos, lo que redunda en un menor impacto en el ecosistema que alberga al cultivo.
-Posibilidad de generación de nuevas alergias:
Un estudio científico de 1999 mostró la posibilidad de que los alimentos transgénicos produjeran algún tipo de daño. En él se indicaba que el intestino de ratas alimentadas con patatas genéticamente modificadas (expresando una aglutinina de Galanthus nivalis, que es una lectina) resultaba dañado severamente. No obstante, este estudio fue criticado debido a la existencia de errores en el diseño experimental y en el manejo de los datos. Por ejemplo, se incluyeron pocos animales en cada grupo experimental (lo que da lugar a una gran incertidumbre estadística), ni se analizó la composición química con precisión de las distintas variedades de patata empleadas, ni se incluyeron controles en los experimentos y finalmente, el análisis estadístico de los resultados era incorrecto.

-Dependencia de la técnica empleada :
-La precisión en la obtención de recombinantes, por ejemplo en su localización genómica, es muy dependiente de la técnica empleada: vectores, biobalística, etc.
-Contaminación de variedades tradicionales:
El polen de las especies transgénicas puede fecundar a cultivos convencionales, obteniéndose híbridos y transformando a estos cultivos en transgénicos. Este fenómeno ya ocurre con las variedades no transgénicas hoy en día. Esto se conoce como Contaminación genética.
-La transferencia horizontal a bacterias de la rizosfera, aunque posible, se considera un riesgo remoto.
-Muerte de otros insectos o polinizadores:
Aunque el empleo de recombinantes para toxinas de Bacillus thuringiensis es, por definición, un método específico, a diferencia de los plaguicidas convencionales, existe una demanda comercial que provoca el desarrollo de cepas que actúan conjuntamente contra lepidópteros, coleópteros y dípteros. Este hecho podría afectar a la fauna accesoria del cultivo.
-Impacto ecológico de los cultivos:
Tal y como hemos mencionado, algunos autores suponen que en las especies resistentes a herbicidas los agricultores los emplean en cantidades mayores, con lo cual causan un mayor impacto ambiental. Este posible riesgo ha sido desmentido para algunos OMG, como el maíz resistente a glifosato. Sin embargo, un estudio reciente, ha mostrado que las formulaciones y productos metabólicos de Roundup causarían la muerte de embriones, placentas, y células umbilicales humanos in vitro aún en bajas concentraciones.
-Obligatoriedad del consume:
La decisión de introducir alimentos transgénicos en la industria alimentaria ha sido totalmente contraria a todo proceso democrático, ocultando incluso la composición de los alimentos. La industria de los OMG sigue estando consciente de que no cuenta con el apoyo de la población de ningún país del mundo, y ello se demuestra con el hecho de que no se revela la información en el envasado de alimentos transgénicos.
-Monopolización del mercado, control del agricultor:
Debido a que la misma empresa de OMG provee al agricultor de la planta y de insecticidas o herbicidas, las plantas están adaptadas a dichos productos quím
icos y viceversa, por lo que el agricultor pasa a depender en exclusiva de una sola empresa proveedora. El monopolio en el suministro conlleva la imposición de precios y condiciones de explotación.
Como cada OMG está patentado por la multinacional a la que pertenece, el agricultor no puede guardar semillas de su plantación para la siguiente siembra, con lo cual las multinacionales de la biotecnología controlan el mercado de las semillas. Cada año, el agricultor debe hacer una fuerte inversión para obtenerlas.